GCE

Chemistry B

H033/02: Chemistry in depth

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level2
L3	Level3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question			Answer	Mark	AO	Guidance
1	(a)			1	2.1	ALLOW other correct representations.
1	(b)	(i)		1	1.1	Labelling of π-bond not essential for mark Precise shape of π-bond not essential, though must be both above and below labelled σ-bond ALLOW, for example, the following shape (filled or open)
1	(b)	(ii)	(It represents) a bond (in a direction) in front of (the plane of) the paper	1	1.1	ALLOW (coming) out of (the plane of) the paper
1	(c)	(i)		1	2.1	ALLOW CH instead of the displayed C-H bonds ALLOW CHCH for double bond ALLOW without bracket and/or n
1	(c)	(ii)		1	2.1	ALLOW other correct representations. ALLOW without bracket and/or n
	(c)	(iii)	Each carbon atom of the double bond has got two different groups attached	2	1.1×2	

Question			Answer	Mark	AO	Guidance
			There is no (free) rotation about a carbon-carbon double bond			
1	(d)	(i)	Electrophilic Addition \checkmark	1	1.1	
1	(d)	(ii)	 both curly arrows in Step $1 \checkmark$ partial and full positive/negative charges shown) \checkmark curly arrow in Step $2 \checkmark$	3	1.2×3	Curly arrows must start (when projected backwards) on the bond concerned OR the minus sign (or a shown lone pair) on the bromide. They must finish (when projected) at the atom concerned or point towards the bond being formed. Product not essential

H03			Mark Scheme			Novembe
Question			Answer	Mark	AO	Guidance
2	(a)		$\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ equation + balancing \checkmark states \checkmark	2	2.2×2	
2	(b)	(i)	Experimental method (diagram with labels): Heat Group 2 carbonates AND pass gas through lime water. Valid test: Use same amount/moles of carbonate \checkmark Idea of same heating intensity Observation: It takes longer to go cloudy for BaCO_{3} (than CaCO_{3}) (ORA)/down the Group (AW) \checkmark	4	$\begin{aligned} & 1.2 \\ & \\ & 3.3 \\ & 3.3 \\ & 2.3 \end{aligned}$	Heated tube can be at an angle ALLOW white(precipitate)/milky/chalky for cloudy. ALLOW it goes less cloudy for BaCO_{3} (than CaCO_{3}) (ora)/down the Group.
2	(b)	(ii)	(The student is incorrect in that) it is not because the (Group 2) metals become more reactive (going down the Group) It is because the (Group 2) cations have a lower charge density going down the Group (ORA) \checkmark This causes less polarisation/distortion of the carbonate ion AND greater (thermal) stability (ORA) \checkmark	3	$\begin{aligned} & \hline 3.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	ALLOW it is not to do with the reactivity of the (Group 2) metals ALLOW larger size to charge ratio. going down the Group ALLOW correct reference to specific examples to illustrate these MPs.
2	(c)	(i)	calcium = (brick) red \checkmark	1	1.2	
2	(c)	(ii)	Black lines AND at the same wavelengths/frequencies as the lines in the atomic emission spectrum \checkmark	2	2.1×2	ALLOW "lines in same places' for 'same wavelengths/frequencies'.

Question			Answer	Mark	AO	Guidance
			on a background of the continuous spectrum/of visible light			ALLOW on a coloured background
2	(c)	(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=3.21 \times 10^{-22}(\mathrm{~kJ})$ award 3 marks $\begin{aligned} & (v=c / \lambda) \\ & v=\left(3.00 \times 10^{8} / 6.20 \times 10^{-7}\right) \\ & =4.84 \times 10^{14} \mathrm{~Hz} \\ & (\Delta \mathrm{E}=\mathrm{h} v) \\ & \Delta \mathrm{E}=\left(6.63 \times 10^{-34} \times 4.84 \times 10^{14}\right) \\ & =3.21 \times 10^{-19} \mathrm{~J} \checkmark \\ & =3.21 \times 10^{-22}(\mathrm{Kj}) \checkmark \end{aligned}$	3	2.2×3	ALLOW 2 or more sf
2	(d)	(i)	$\begin{aligned} & (0.06 / 25.0) \times 100 \\ & =0.24(\%) \checkmark \end{aligned}$	1	2.4	
2	(d)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=1.73\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ award 4 marks $\begin{aligned} & \text { Amount of } \mathrm{HCl}(\text { in mean titre })=(11.70 / 1000 \times 0.100) \\ & =1.17 \times 10^{-3} \mathrm{~mol} \checkmark \\ & \text { Amount of } \mathrm{Ca}(\mathrm{OH})_{2}\left(\text { in } 15.0 \mathrm{~cm}^{3}\right)=1.17 \times 10^{-3} / 2 \\ & =5.85 \times 10^{-4} \mathrm{~mol} \checkmark \end{aligned}$ Concentration $\mathrm{Ca}(\mathrm{OH})_{2}=\left(5.85 \times 10^{-4} \times 1000 / 25\right)$ $=0.0134 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ Mr of $\mathrm{Ca}(\mathrm{OH})_{2}=74.1$ Concentration $\mathrm{Ca}(\mathrm{OH})_{1}=(0.0134 \times 74.1)$ $=1.73\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$	4	2.8×4	ALLOW two or more sf

Question		Answer	Mark	AO element	Guidance
$\mathbf{2}$	(e)	The mean titre/it would be greater/larger (than $\left.11.70 \mathrm{~cm}^{3}\right)$.	$\mathbf{1}$	$\mathbf{3 . 2}$	
AND Barium hydroxide is more soluble than calcium hydroxide/Solubility increases down Group 2/the Group. \checkmark	ALLOW (A) saturated (solution of) barium hydroxide has a higher concentration of hydroxide ions than that of calcium hydroxide.				

Question			Answer	Mark	AO	Guidance
3	(a)		Sodium hydroxide reacts with both the phenol and carboxyl (functional) groups to give $\mathrm{NaOC}_{6} \mathrm{H}_{4} \mathrm{COONa} \checkmark$ sodium carbonate only reacts with the carboxyl (functional) group to give $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COONa} \checkmark$ The carboxyl (functional) group is more acidic than the phenol (functional) group \checkmark	3	3.1 3.1 2.5	ALLOW structures with ionic charges shown. ALLOW structures with benzene rings drawn. ALLOW the (sodium) carbonate is not a strong enough base to remove the hydrogen from the phenol group.
3	(b)	(i)	To prevent loss of reactants/products/mixture (by vaporisation)	1	1.2	
3	(b)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 61 (\%) award 3 marks $\begin{aligned} & 2.8 /[(3.5 / 138) \times 180] \times 100=61(\%) \\ & {[(3.5 / 138) \times 180] \checkmark} \\ & \text { calculation of } \% \checkmark \\ & 2 \text { s.f. } \checkmark \end{aligned}$	3	2.8×3	61.3(3) DOES NOT score s.f. mark
3	(c)		Ester \checkmark	1	2.1	
3	(d)		The oxygen atom is more electronegative than the carbon atom AND the carbon to oxygen double bond is polar covalent pd-pd attractions (between $\mathrm{C}^{\delta+}$ and $\mathrm{O}^{\delta-}$) are strong/ not the strongest imbs \checkmark The high melting point is due to the (stronger) hydrogen bonds between the carboxyl groups (in neighbouring molecules) \checkmark	3	$\begin{gathered} \hline 3.1 \\ 3.2 \times 2 \end{gathered}$	

Question		Answer	Mark	AO element	Guidance
$\mathbf{3}$	(e)		(Neutral) iron(III) chloride solution will give a purple colouration with (only) the 4-hydroxybenzoic acid \checkmark	$\mathbf{1}$	$\mathbf{2 . 7}$
$\mathbf{3}$	(f)	Dissolve the crude product in the minimum volume of hot ethanol \checkmark (Filter to remove insoluble impurities).	$\mathbf{4}$	$\mathbf{1 . 2 \times 4}$	ALLOW 'solvent' for 'ethanol'
Allow the hot solution to cool. \checkmark					
Filter to remove recrystallised product. \checkmark					
Wash (the solid with cold solvent) AND dry. \checkmark					

Question		Answer	Mark	AO	Guidance
3	(g)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description of how to produce a chromatogram (with some fine detail [italic]). AND Detailed explanation of what the results show. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Detailed description of how to produce a chromatogram (with some fine detail [italic]). OR Describe in partial detail how the chromatogram is produced. AND Provide a partial explanation of what the results show. OR Detailed explanation of what the results show. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1-2 marks) Describe in partial detail how the chromatogram is produced. OR	6	$\begin{aligned} & 1.2 \times 3 \\ & 3.2 \times 3 \end{aligned}$	Indicative Scientific points include: Description of how the thin-layer chromatogram is produced (fine detail in italic) - Draw a pencil line on tlc plate \# - Line must come above solvent level ${ }^{\#}$ - Spot mixture and pure samples onto pencil line ${ }^{\text {\# }}$ - Place plate in a beaker of solvent ${ }^{\#}$ - Beaker covered ${ }^{\#}$ - Remove plate when solvent front is near to top of plate - Mark how far solvent has reached - Allow plate to dry - Locate any spots - with iodine or under a u.v. lamp (\# can be achieved in a labelled diagram) Analysis of results of the experiment - Alkaline results/Fig 3.1 show some breakdown of paraben/4-acetyloxybenzoic acid after 1 week and even more after 1 month * - The amounts/spots of P decreases and B increases between 1 week and 1 month - Acidic results/Fig 3.2 show no breakdown after 1 week and some after 1 month. * - No B was produced after 1 week but amounts/spots of P decreases and B increases slightly between 1 week and 1 month * faster hydrolysis in alkaline than acidic (conditions)

Question		Answer	Mark	AO element	Guidance
		OR Detailed explanation of what the results show. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant $\mathbf{0 ~ m a r k s ~}$ No response or no response worthy of credit.			

	esti	Answer	Mark	AO	Guidance
4	(c)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description of how to reduce measurement uncertainty AND reduce 'heat losses'. AND some detail for the graphical method. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description of how to reduce measurement uncertainty AND reduce 'heat losses'. OR Detailed description of how to reduce measurement uncertainty OR 'heat losses' with some reference to the graphical method. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1-2 marks) Outline description of how to reduce measurement uncertainty. OR Outline description of how to reduce 'heat losses', OR Outline description for the graphical method. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	$\begin{aligned} & \hline 3.3 \times 3 \\ & 3.4 \times 3 \end{aligned}$	Indicative Scientific points include: Making measurement uncertainty smaller - Use a $50.0 \mathrm{~cm}^{3}$ pipette/measuring cylinder - Use a thermometer of greater precision/to the nearest 0.5 or $0.1^{\circ} \mathrm{C}$ - Use a balance weighing to 0.01 g Making 'heat losses' smaller - Use a polystyrene beaker - lid on beaker (loose fitting - gas is evolved) - Stir throughout Graphical method (points can be achieved in words or by sketching graph) - Continue to record temperature every minute/half minute until temperature starts to fall again - Extrapolate cooling line - Read the theoretical maximum temperature change at the time when the reactants were mixed

H033/02 Mark Scheme Novem					
Question		Answer	Mark	AO	Guidance
		0 marks No response or no response worthy of credit.			
4	(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=(+) 76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks \checkmark (for Hess' law enthalpy cycle) $\Delta H_{1}=2 \Delta H_{2}-\Delta H_{3}$ (for correct relationship between the three ΔH terms) $\begin{aligned} & \Delta H_{1}=2(+23)-(-30)^{\wedge} \\ & \Delta H_{1}=(+) 76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	4	2.4×4	ALLOW 76 without sign Award the mark for the Hess' law enthalpy cycle separately to the three marks for the calculation. The $\Delta \mathrm{H}$ values do not need to be included to achieve the mark for the Hess cycle as they occur in MP2. They are left in the cycle here to assist the marker.
4	(e)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=(+) 463.5 / 464\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $\begin{aligned} & 4 \mathrm{O}-\mathrm{H}-1370=484 \checkmark \\ & \mathrm{O}-\mathrm{H}=+463.5 / 464\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	2.2×2	ALLOW number without sign
4	(f)	NaHCO_{3} (and $\mathrm{Na}_{2} \mathrm{CO}_{3}$) ionic so not all bonds are covalent (AW)	1	3.2	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

